Can t hese problems be solved wit hout formal algebra? Yes, indeed! There are st rat egies that include vis ual modeling and/or st raight forward comput at ion.

Problem \#1:

Mervin had some cart ons of milk. He sold $2 / 5$ of the cart ons in the morning. He then sold $3 / 4$ of the remainder in the aft ernoon. He sold 24 more cart ons in the aft ernoon than in the morning. How many cart ons of milk did Mervin have at first?

One way to solve this is to use comput at ion. Subt ract ion tells us that hestill had $3 / 5$ of his cart ons left at t he st art of t he aft ernoon. Then he sold $3 / 4$ of $3 / 5$ of his original number.
$3 / 4 \times 3 / 5=9 / 20$ of his original number.
In the morning, he sold $2 / 5$ of his original number.
A common denominat or would be helpful now, so let 's change the $2 / 5$ int 0 8/20.
So he sold $8 / 20$ of his cart ons in the morning and $9 / 20$ in the aft ernoon.
He sold $1 / 20$ more in t he aft ernoon t han in t he morning.
He sold 24 more in the aft ernoon, so that must bet he value of the $\mathbf{1 / 2 0}$.
If $1 / 20=24,20 / 20=24 \times 20$, or 480 .
That was his original supply - 480 cart ons of milk.

Problem \#2:

Alice baked a cert ain number of pies. S he gave $1 / 8$ of the pies to her friends and $1 / 4$ of the remainder to her neighbor. S he was left wit h 63 pies. How many did Alice bake?

So let's draw a diagram - a long bar that represent s the pies at the beginning - and cut it int 0 eight hs. (Students don't need to maket hese 8 parts ident ical in terms of meas urement. They just need $t 0$ know t hat the drawing is a represent ation of eight hs.)
\square
And we'll label the $1 / 8$ of her pies that she gave $t 0$ her friend.:
\square

Now we'll draw a new bar under the $7 / 8$ that Alice st ill has. We'll cut it int o 4 parts and label one wit h the pies she gave her neighbor. That is, she gave away $1 / 4$ of $7 / 8$

She now has 3/4 of 7/8 of her pies left.
Shehas 63 pies left.
So each of t hose parts must represent 21 pies (63 $\div 3=21$).

friend							
	neighbor	21	21	21			

S ince each of t hose fourt hs is wort $\mathbf{2 1}$, she must have given 21 pies to her neighbor:

All t hose fourt hs in the second bar add up to 84.
They represent $7 / 8$ of t he original pies.
The friend got the ot her $1 / 8$ of t he pies.
If $7 / 8=84$,t hen $1 / 8$ must be worth 12.
The t ot al number of pies =12 plus 84 , or 96 pies.

As you can see, t he comput at ions weren't difficult , but the problems had to be analyzed and repres ent ed correct ly. And high school algebra was not required.

